
Innovation for Our Energy Future

DOE Wind Program Testing

- Overview of capabilities, support activities & projects
- Mission need, federal role, risks
- Issues & concerns
- Future Plans
 - Interim stop-gap blade testing
 - Large Wind Turbine Test Facilities(LWTTF) Jim Johnson
 - Offshore dynamic testing requirements Sandy Butterfield

Testing Overview

- Test Capabilities:
 - Structural
 - Blades, components
 - Dynamometer
 - Drivetrains, gearboxes, motors, power electronics
 - Field
 - Full-scale turbine systems, prototype turbines, wind farm monitoring, Hybrid Systems, R&D
- Support development & evolution of international test standards
- A2LA accreditation
 - recognized by certification and financial institutions (conform to IEC, UL, GL)

Structural Testing Capabilities

- Blades (3 test facilities)
 - Fatigue
 - Single or dual axis (flap and edge simultaneously)
 - New Blade Resonant Excitation (B-REX) system
 - Static, ultimate strength
 - Displacement, stiffness, strain, modal
 - Support advancement of blade structural models, design tools, NDE, and design methods.
- Components
 - Load frames
 - Small blade test stand

Structural Testing Projects

- Recent
- In Progress
- Upcoming

IUF (32 m +)	251 Highbay & A-60 (19 m)	Small blade stand, load frames, misc.
GE 34c 1.5 MW* CRADA (Mar 2004, 7 months)	NPS-100* Sandia BMI (2003)	SWWP H-40 rotor CRADA (2003)
TPI 44.7 m 2.5 MW CRADA (Oct 2004, 5 months)	K&C 56-100 root WFO UL (Nov 2003, 1 month)	Bergey XL-50 blades* DWT (2004)
GE 1.5 MW carbon* CRADA (Mar 2005, 2 months)	3Tex 10m carbon spar SBIR (Jan 2005, 2 months)	SWWP Storm blades #1* DWT (July 2004, 5 months)
3Tex 10m carbon spar SBIR WFO (May 2005, 1 month)	TPI CX-100 9m* Sandia (Mar 2005, 2 months)	Renew A2LA structural testing accreditation*
Clipper 45m* LWST (June 2005, 4 months)	TPI TX-100 9m* Sandia (May 2005, 2 months)	SWWP Storm blades #2* DWT (Early 2005, 2 months)
Wetzel Bend-Twist SBIR WFO (Oct 2005, 2 months)	TPI WindPACT* Sandia (July 2005, 2 months)	TPI/ NPS studs DWT (Early 2005, 1 month)
GEC Bend-Twist SBIR WFO (Dec 2005, 3 months)	LWST Ph. II Component* LWST (Sept 2005, 4 months)	
LWST Ph. II Component* LWST (March 2006, 4 months)		

^{*}Program Milestone

Structural Testing Facility Upgrades

- Recent
- In Progress
- Upcoming

IUF (32 m +)	251 Highbay & A-60 (19 m)	Small blade stand, load frames
B-REX increased mass & accumulation	Dual-axis forced- hydraulic test system	Small blade test stand
Test stand posterior attachments	DAS channel # & hardware	
DAS channel # & hardware	Smaller B-REX	
Test stand face welds		
B-REX for single-axis edgewise testing		
Temporary outdoor 50m blade test stand*		
Large blade handling hardware (move, rotate)		

^{*}Program Milestone

Dynamometer Testing Capabilities

- Drivetrains (large & small dyno test facilities)
 - Gearboxes
 - Gear contact pattern, fatigue
 - Motors
 - Power electronics systems & controls
- Drivetrain system integration
- Component & system efficiency
- Endurance
- Safety & function
- Condition monitoring
- High-speed data acquisition
 - Gear strain, electrical waveforms

Dynamometer Testing Projects

- Recent
- In Progress
- Upcoming

2.5 MW Dyno		Small Dyno (225 kW) (Under development)	
Clipper DGD-1 1.5 MW* LWST (Mar 2003, 17 months)		SWWP Storm 1.8 kW DWT (2005)	
Clipper DGENQ 2.5 MW* LWST (Aug 2004, 6 months)		NPS-100 100 kW DWT (2005)	
GEC 1.5 MW SS gearbox, MS PM generator* WindPACT (Feb 2005, 3 month)	GE Wind 1.5 MW SLE 77m drivetrain CRADA (3 months)	University Subcontracts	
NPS 1.5 MW DD PM generator* WindPACT (May 2005, 3 months)	GE Wind 1.5 MW XLE 82m drivetrain CRADA (3 months)		
NPS 1.5 MW PE* LWST (June 2005, 3 mon	ths)		

Dynamometer Testing Facility Upgrades

- Recent
- In Progress
- Upcoming

2.5 MW Dyno	Small dyno (225 kW)	
	(Under development)	
Gearbox re-ratio to increase power output needed to test 2.5 MW drives*	\$200K NREL General Purpose Plant funding approved – connect to turbine bus to enable regeneration	
Full-torque direct LSS calibration system	Interconnection switchgear	
690 VAC transformer regeneration loop*	DAS upgrade	
DAS channel #, sample rate & hardware		

^{*}Program Milestone

Field Testing Capabilities

- Full-scale turbines
 - NWTC or industry partner sites
- Typical types of tests:
 - Accredited Loads, Power Performance, Acoustic Noise, Power Quality, Duration, Safety and Function
- Custom testing to meet R&D objectives
- Hybrid power test bed
 - Hydrogen electrolyzer, desal, fuel cells...
- Wind farm data monitoring
- Development of data acquisition systems for industry use
- Testing & certification training

Field Testing Projects

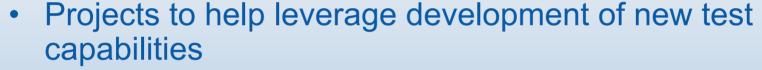
- Recent
- In Progress
- Upcoming

LWST	DWT/ Hybrid	R&D, Misc.
GE Wind - Anemometer comparison* – 3 sites	NPS NW-100 loads* - NWTC	ART/ CART, SWWP Air, NPS, SWRT – data for aeroacoustics code validation* - NWTC
GE 1.5 MW loads (with UL)	SWWP H-80 tower loads - NWTC	Small Wind Research Turbine (SWRT)* NWTC
Wind farm monitoring* for Systems Integration	Bergey XL.50 loads test set-up* - NWTC	Controls Advanced Research Turbine (CART)* - NWTC
Clipper LWST site cal*	Hydrogen electrolyzer* – NWTC HPTB	GE Wind/ Sandia Lamar Low Level Jet Project*
Clipper LWST loads*	SWWP Storm loads* - NWTC	Renew A2LA structural testing accreditation*
GE Wind LWST loads*	NW Seed RFV* – Bergey XL.10	Wind Turbine Company 250 kW POC restart
	DWT Phase I Projects*	3-bladed CART* – NWTC

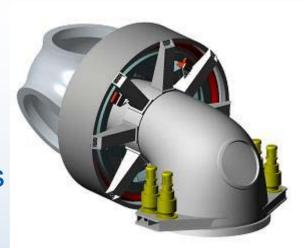
Mission Needs

- Testing is a critical element of Wind Program
 - LWST and DWT technology development
 - Decade of industry reliance on facilities & support
 - Essential to minimize risk of latent design flaws resulting in costly fleet-wide retrofits

- Pathways for Wind Program goals outstrips existing testing capability
 - To achieve LWST cost reduction goal, industry is scaling to megawatt scale turbines – 2.5 to 5MW range
 - NWTC infrastructure and testing facilities are not adequate to support the LWST goals

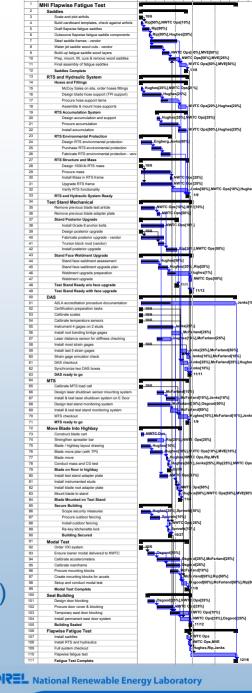

Issues & Concerns

- Prioritizing test projects
- Mitigating test delays
 - Accommodating partner needs:
 - Project priority shifts
 - Resource problems
- Reductions in NWTC test staff
- Large Wind Turbine Test Facilities (LWTTF)
 - Proposed 8 MW Dyno and 70m blade testing
 - Expected FY'08 at earliest
 - Interim solutions



Issues & Concerns: Factors to Consider in Prioritizing Test Projects

- Projects supporting Wind Program goals
 - LWST and DWT technology development
 - Quantify progress (ATTU)



- Anticipated needed to support Program goals
- Opportunity to offset costs through fee-for-services testing (CRADA or WFO)
- Projects supporting industry partner needs
 - Certification, risk mitigation, performance characterization
 - Opportunity to offset costs through fee-for-services testing (CRADA or WFO)

Issues & Concerns: Recommendations for Mitigating Test Delays

- Designate single points of contact
 - At NREL and at industry partner organization
 - Especially if multiple test activities
 - Establish priorities
 - Main conduit for test planning and coordination
 - Work for quick resolution of unplanned problems
 - Test plan deviation, failures, payment issues
- Maximize facility utilization
 - Prior to test installation in facility
 - Complete agreed-upon detailed test plan
 - Verified test support apparatus
 - Receipt of agreed-upon cost sharing (CRADA, WFO)
 - Remove test article if down time exceeds predefined limit

Issues & Concerns: NWTC Testing Staff Reductions

- Reduced from 16 to 12 FTE's
 - 3 test engineers & 1 technician departed
 - 5 test engineers & 7 technicians remain
 - Replaced departing post-doc with BSME intern
 - Retain 4 subcontracted support technicians
- Solution:
 - Request increased up-front test support from industry partners:
 - Test planning
 - Engineering, construction, & delivery of test support apparatus
 - Delivery of instrumented test articles
 - Minimize NREL engineering & technician needs during testing
 - Partner commits staff to provide agreed-upon level of test support
 - Continuing to transition certification field testing to industry
 - Maintain minimal core competency in most areas
 - In-house focus on loads testing
 - Train industry partner staff to conduct own testing

Large Wind **Turbine Test Facilities**

1989 FIRST BLADE **TEST FACILITY IN USA**

1996 **INDUSTRIAL USER FACILITY TESTING FOR BLADES UP TO 37-METERS**

1999 **DYNAMOMETER TEST FACILITY FOR TURBINES UP TO 2.0-MW**

2008 **NREL LWTTF 8 MW DYNO** 70-M BLADES

NO LARGE TURBINE **TEST FACILITIES** EXIST IN THE USA

Wind Turbine Size **Average Commercial Turbine Sizes**

1989 100-kW 9-METER **BLADES**

1996 500-kW 19-METER **BLADES**

1999 750-kW **24-METER BLADES**

2003 1500-kW 37-METER **BLADES**

2005 2500-kW 45-METER **BLADES**

2010 >5000-kW 70-METER **BLADES**

NREL National Renewable Energy Laboratory

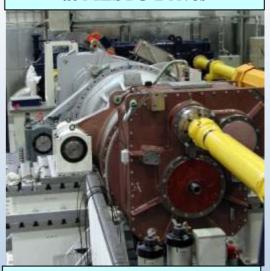
Federal Role in Providing Test Facilities

- An open, accredited, third-party testing facility is needed for both large and small wind companies to remain competitive with European manufacturers by
 - Validation of designs to reduce risks
 - Meeting certification requirements for domestic and international sales
- Most U.S. wind turbine manufacturers and component suppliers lack sufficient capital to develop suitable test facilities on their own
 - Multiple U.S. manufacturers are needed for mission success and for a strong, competitive industry

European Blade Testing

- Risoe National Laboratories Denmark
 - Fee for service government facility
 - Blades up to 45-meters
- LM Glasfiber Denmark
 - Private facility
 - ➤ Blades up to 55-m
- NEG Micon UK
 - Private Test Facilities
 - Formerly WEG/Aerolam
 - Blades up to 40-m
- WMC-Group / Delft University- Netherlands
 - Government funded / ECN in development
 - Fee for service
 - Blades up to 60-m.
- New and Renewable Energy Center (NaREC)
 - New test facilities being developed at former Blythe shipyard
 - ➤ Blades up to 70-m.
 - Planned Fee for service
 - Government Financed £5,000,000

LM Blade Test Facility



European Drivetrain Test Facilities

Testing: Gearbox vs. Drivetrain System

- Currently most drivetrain testing is limited to gearbox acceptance testing at the gear suppliers.
 - Flender, Eikoff, Metso, Hansen have gearbox test facilities.
 - ➤ Tests are limited to commercial gearboxes innovations require new customer-financed test facilities.
- ➤ No comparable gearbox test facilities exist in the U.S. due to diminished gear industry.
- ➤ NREL operates the only integrated drivetrain test facility in the world.
 - Capable of testing full systems, gearboxes, direct drive generators, power electronics, and controls.
 - ➤ 2.5-MW capacity too low for current industry projects.
 - ➤ High demonstrated value in system integration testing.
- ➤ Proposed 12-MW Danish Dynamometer
 - ➤ Budget approximately \$10M
 - ➤ Operated for service fee by Risoe Labs
 - ➤ Limited to gearbox testing

Finland - 6-MW Gearbox Test Facility at MESTO Drives

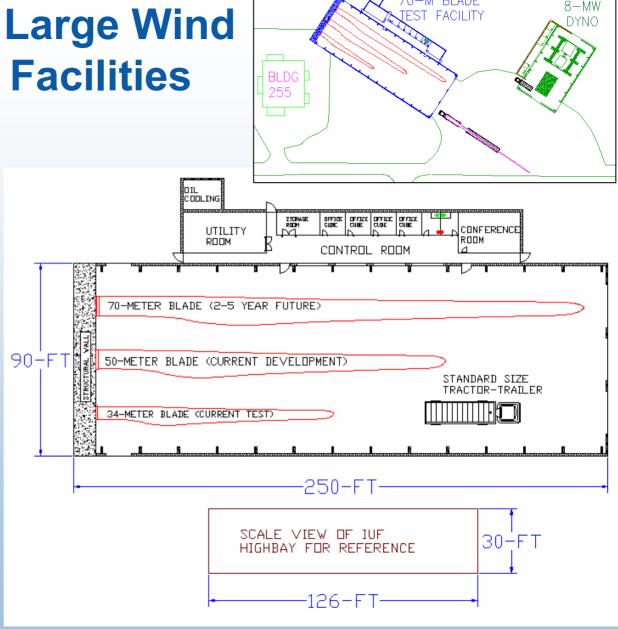
Integrated Drivetrain 2.5- MW Test Facility at NREL

Risks Without LWTTF

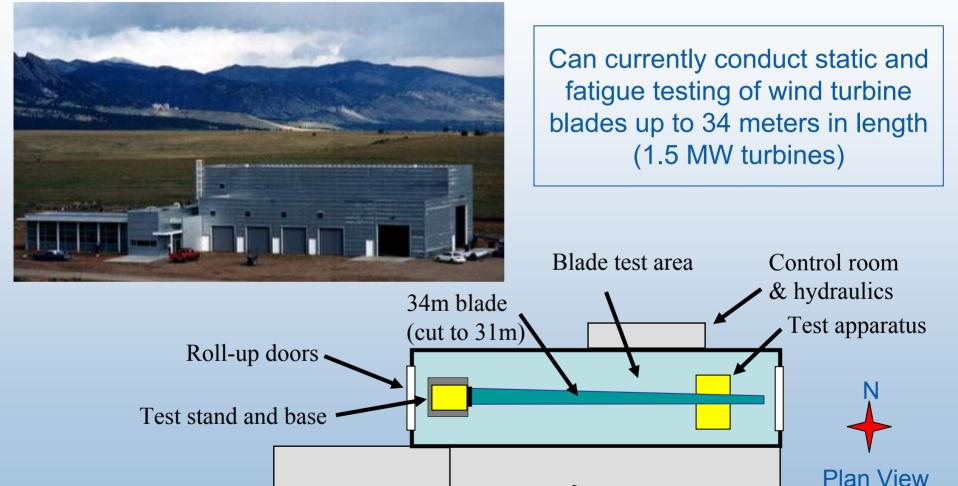
- Risk to the Wind Program:
 - Failure to meet mission needs and goals due to higher technology costs and noncompetitive U.S. manufacturers
- Risk to U.S. Wind Industry:
 - Bankruptcy due to catastrophic component failures
 - Loss of market share to foreign manufacturers due to fleet-wide equipment failures and poor machine reliability

Current Status and Need

- US Wind Industry:
 - Skyrocketing at 30% growth rate per year
 - Has outgrown existing NWTC blade and dyno test facility capabilities (34 meter max, 1.5 MW turbine)



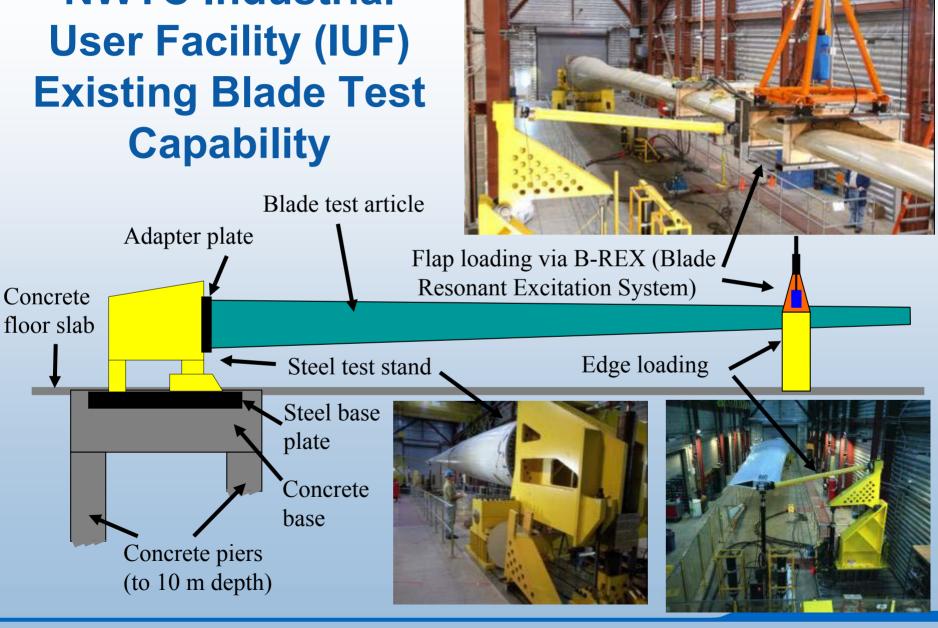
- Immediate need for blade tests:
 - TPI: 44 m, MHI 2 MW (CRADA)
 - Clipper: 45 m, 2.5 MW (LWST)
 - GE Wind: 45 m, 2.x MW (LWST)
- Have to resort to blade testing overseas
 - Low priority
 - Expensive
- Looking for other blade test options


Ideal Solution: Large Wind Turbine Test Facilities

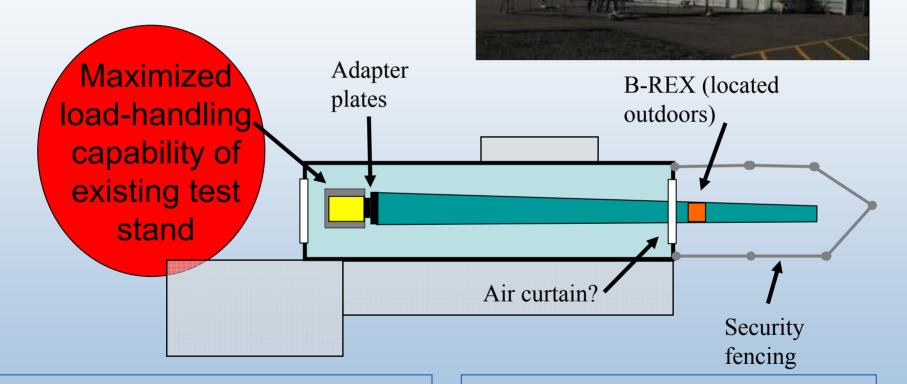
- Significantly delayed
 - Industry needs LWTTF now
 - Many hurdles yet to clear
 - Needs congressional approval and funding
 - Anticipated bestcase completion FY'08
- Planned interim stopgap blade test solutions
 - Stretch use of existing facility
 - Less than ideal, many limitations
- No interim dyno test solutions

70-M BLADE

NWTC Industrial User Facility (IUF) Existing Blade Test Capability

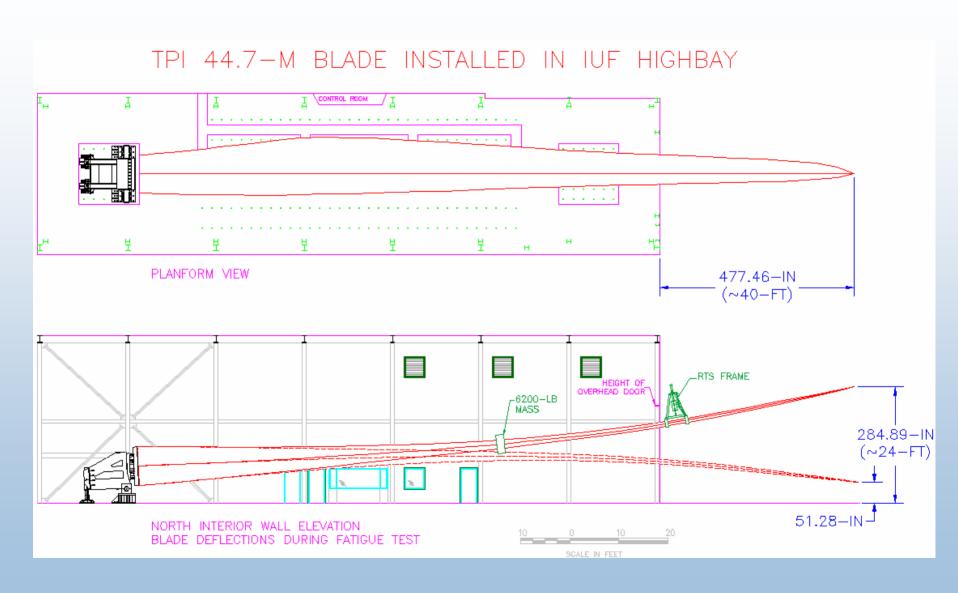


User bays and shop areas


NREL National Renewable Energy Laboratory

Office & lab areas

NWTC Industrial User Facility (IUF) Capability

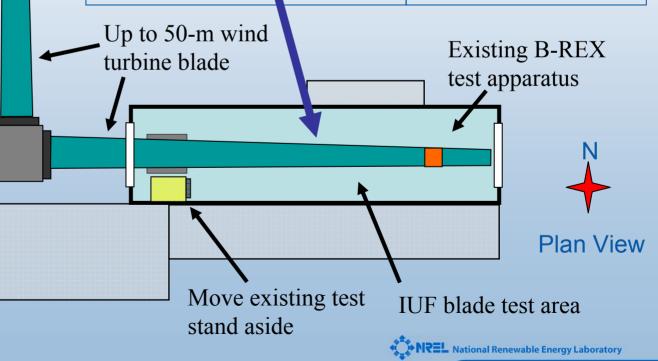

Stop-gap Blade Test Solution #1:

Single-axis fatigue testing of 44.7m TPI blade (funds-in CRADA)

Cannot conduct static testing or dual-axis testing

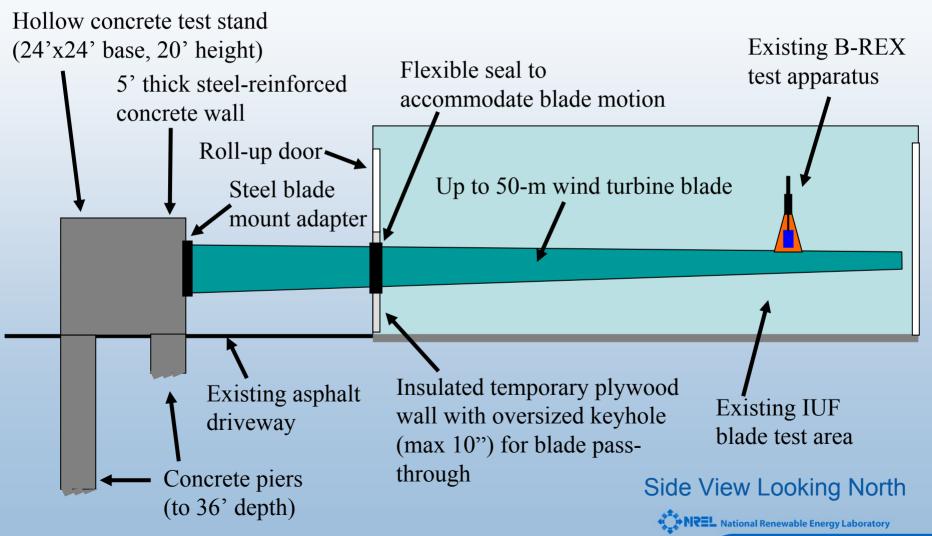
Blade Test Preparation and Static Test Position

Blade root attached to test stand tilts upward 20° to allow for static test deflection

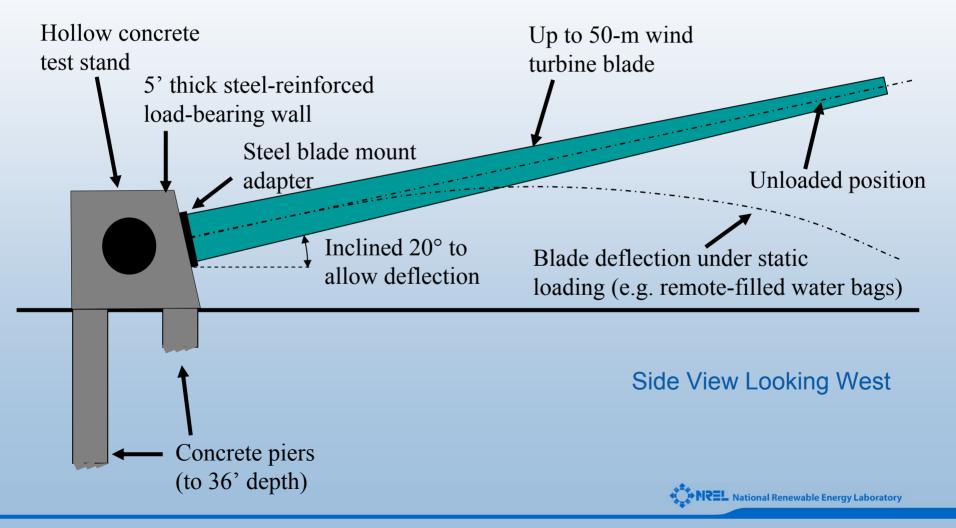

Temporary concrete blade test stand – exp.

completion

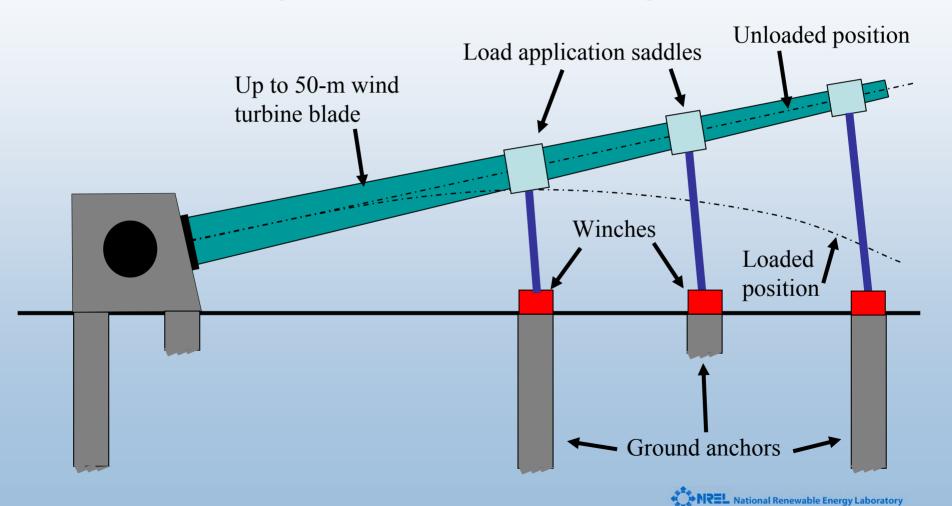
3/05


Stop-gap Blade Test Solution #2:

Blade Fatigue Test Position (dual-axis testing not possible) Blade root attached to test stand outside, extends inside through keyhole opening to existing test apparatus and instrumentation


Temporary 50-m Blade Test Stand

Blade Fatigue Test Position



Temporary 50-m Blade Test Stand

Blade Test Preparation and Static Test Position

Temporary 50-m Blade Test Stand Static Blade Pull Test Capability (Planned for FY'06)

Temporary 50-m Blade Test Stand: Risks

- If Built: purpose may be misunderstood
 - Does not replace or delay need for LWTTF!
 - Can help US wind industry, but many limitations:
 - Cannot do simultaneous dual-axis testing, restricted edge loading
 - Cannot do static testing using IUF crane, pushes the limit of existing IUF test capabilities (other restrictions depending on blade size, weight, required deflection)
 - Weather and temperature difficulties
 - Much-reduced test efficiency
 - Test durations more than 2x longer (>6 months) to provide accredited data to certifying agencies
 - Some tests not possible
 - Helps reduce backlog of planned tests, but can't catch up
- If Not Built: US industry falls farther behind
 - Delays in certification, look for solutions elsewhere

Temporary 50-m Blade Test Stand: Lowest-cost Option

- To address immediate industry-partner blade test demands:
 - Accredited static (ultimate strength) and fatigue testing
 - Apply loading needed to test blades up to 50 meters
 - Flap bending max torque at blade root: ±1.6E7 N-m (±12,000,000 ft-lbs)
 - Edge bending max torque at blade root: ±6.1E6 N-m (±4,500,000 ft-lbs)
- Conducted engineering trade-off studies:
 - Simple, hollow block made of of steel-reinforced concrete, 24'x24',
 20'high
 - Anchored to 4 concrete piers, each 36' deep
 - 5' thick structural load-carrying walls
 - Constructed outdoors, 35'- 40' from IUF door
 - Blades attach to stand and project into IUF to utilize existing test capabilities
 - hydraulics, test gear, instrumentation
- To be removed when LWTTF is completed
 - Tear-out strategy

Schedule and Budget

Schedule

- 2 months: Design contract placed & executed
- 2 months: Competitive procurement solicitation
- 3 months: Construction
- Expecting completion March '05

Budget

- Using Wind Program capital funds
- Cost estimate: \$400K (FY'04 & '05)
 - Design & engineering: \$25K
 - Construction: \$350K
 - Contingency: \$25K
- Ground anchors for static test pull: \$50K (FY'06)

44.7m Blade Move

